NUMBER BASES

Summary:

- 1. Number bases are different ways of writing down numbers.
- 2. The most common base system is base 10.
- 3. The digits of a number in any base are less than the base itself
- 4. The digits 10 and 11 are represented by t and e respectively in number bases

NOTE:

- (i) Base 10 is called decimal base
- (ii) Base 2 is called binary base
- (iii) Base 3 is called trinary base
- (iv) Base 8 is called octal base

EXAMPLES:

1. Convert the following to base ten

(ii) 346 seven

(iii) 2210 three

(iv) 2et twelve

(v) 312 · 21 four (vi) 0 · 12 six

solution

(i) 1011 two =
$$(1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)$$

= $(1 \times 8) + (0 \times 4) + (1 \times 2) + (1 \times 1)$
= 11_{ten}

(iv) 312 · 21 four =
$$(3 \times 4^2) + (1 \times 4^1) + (2 \times 4^0) + (2 \times 4^{-1}) + (1 \times 4^{-2})$$

= $(3 \times 16) + (1 \times 4) + (2 \times 1) + (2 \times \frac{1}{4}) + (2 \times \frac{1}{16})$
= $54 + \frac{1}{2} + \frac{1}{16}$
= $54 \frac{9}{16}$ for $54 \cdot 5625$ ten

CONVERTING FROM BASE TEN TO OTHER BASES

Summary:

- (i) Divide the number repeatedly by the required bases
- (ii) The remainder in reverse order gives the required number

EXAMPLES:

1. Convert 64 ten to base three

3	64	R	-
3	21	1	• •
3	7	0	
	2	1	-

$$\therefore 64_{ten} = 2101_{three}$$

- 2. Convert 246 ten to base five
- 3. Convert 2101 three to base seven

Hint: First convert 2101 to base ten

2101 three =
$$(2 \times 3^3) + (1 \times 3^2) + (0 \times 3^1) + (1 \times 3^0)$$

= 64_{ten}

7	64	R	<u></u>
7	9	1	,
	1	2	

5. Find the value of **n** in the following equations:

(i)
$$45_n = 1112_{three}$$
 (ii) $21_n = 19_{ten}$ (iii) $303_n = 410_{six}$

$$(iii) 303_{n} = 410_{six}$$

$$(iv)^{202}_{n} = 37_{nine}$$

$$(iv) 202_n = 37_{nine}$$
 $(v) 112_n + 304_n = 421_n$

OPERATIONS WITH ANY BASE OTHER THAN 10

ADDITION:

If the sum of the digits exceeds the base, divide that sum by the base then write down the remainder and carry the whole number.

EXAMPLES:

1. Workout the following leaving your answer in the base indicated

Solution:

$$(i)$$
 136 $_{seven}$ $+$ 254 $_{seven}$ $\frac{423}{}_{seven}$

(ii)
$$232$$
 five $+344$ five 1131 five

(iii)
$$28 \cdot 57$$
 nine $+ 6 \cdot 34$ nine $36 \cdot 02$ nine

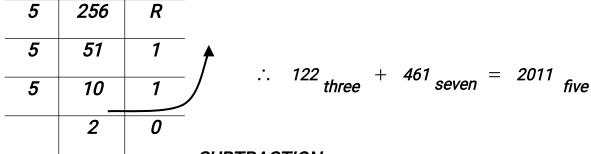
2. Workout 122 + 461 seven giving your answer in base five

Hint: First convert 122 and 461 seven to base ten and then finally express the answer in the required base

122 three =
$$(1 \times 3^2) + (2 \times 3^1) + (2 \times 3^0) = 17$$
 ten

461 seven =
$$(4 \times 7^2) + (6 \times 7^1) + (1 \times 7^0) = 239$$
 ten

$$\Rightarrow$$
 122 _{three} + 461 _{seven} = 17 _{ten} + 239 _{ten} = 256 _{ten}



SUBTRACTION:

In case of borrowing the new value is the sum of the base and the digit which was small.

EXAMPLES:

1. Workout the following leaving your answer in the base indicated

Solution:

(ii)
$$254$$
 eight -217 eight -35 eight

(iii)
$$30 \cdot 241$$
 five $+ 14 \cdot 143$ five $14 \cdot 043$ five

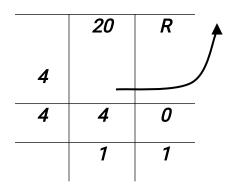
2. Workout 221 three - 101 two giving your answer in base four

Hint: First convert 221 and 101 two to base ten and then finally express the answer in the required base

221 three =
$$(2 \times 3^2) + (2 \times 3^1) + (1 \times 3^0) = 25$$
 ten

101_{two} =
$$(1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) = 5_{ten}$$

$$\Rightarrow$$
 221 _{three} - 101 _{two} = 25 _{ten} - 5 _{ten} = 20 _{ten}



$$\therefore 221 \quad - \quad 101_{two} = 110_{four}$$

MULTIPLICATION AND DIVISION

EXAMPLES:

1. Workout the following leaving your answer in the base indicated

(i) 152
$$_{eight}$$
 $imes$ 43 $_{eight}$

(ii) et5
$$_{twelve}$$
 \times 8t $_{twelve}$

(iii) 124
$$_{\it five}$$
 \times 32 $_{\it five}$

Solution:

$$(i) 152 eight \\ \times 43 eight \\ \hline 476 \\ + 650 \\ \hline 7176 eight$$

$$(ii) et5 twelve \\ \times 8t twelve \\ \hline 9t82 \\ + 7te4 \\ \hline 88t02 twelve$$

(iii) 124 five
$$\times 32$$
 five
$$303$$

$$+ 432$$
 five
$$10123$$
 five

2. Workout 1011 $_{two}$ \times 12 $_{three}$ giving your answer in binary base

Hint: First convert 1011 $_{two}$ and 12 $_{three}$ to base ten and then finally express the answer in the required base

1011 _{two} =
$$(1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 11_{ten}$$

$$12_{three} = (1 \times 3^{1}) + (2 \times 3^{0}) = 5_{ten}$$

$$\Rightarrow$$
 1011 _{two} \times 12 _{three} = 11 _{ten} \times 5 _{ten} = 55 _{ten}

2	<i>55</i>	R

2	27	1
2	13	1
	6	1 1
2		
2	3	0

$$\therefore 1011_{two} \times 12_{three} = 110111_{two}$$

3. Workout the following leaving your answer in the base indicated

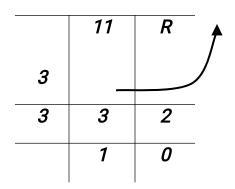
Solution:

(i) Hint: First convert 2001 and 12 three to base ten and then finally express the answer in the required base

2001 three =
$$(2 \times 3^3) + (0 \times 3^2) + (0 \times 3^1) + (1 \times 3^0) = 55$$
 ten

12 three =
$$(1 \times 3^{1}) + (2 \times 3^{0}) = 5_{ten}$$

$$\Rightarrow$$
 2001 three \div 12 three $=$ 55 ten \div 5 ten $=$ 11 ten



$$\therefore$$
 2001 three \div 12 three \Rightarrow 102 three

(ii) 110111
$$_{two} = (1 \times 2^5) + (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 55_{ten}$$

101 $_{two} = (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) = 5_{ten}$

$$\Rightarrow$$
 110111 $two \div 101 two = 55 ten \div 5 ten = 11 ten$

2	11	R
	5	1 1
2		
2	2	1
	1	0

$$\therefore$$
 110111 $_{two} \div 101_{two} = 1011_{two}$

EER:

- 1. Convert the following to base ten
 - (i) 2212 three
- (ii) 1011 _{two}
- (iii) 234 five
- **2.** Express 0.24_{six} as a fraction in base ten
- 3. Express $45 \cdot 3_{six}$ in base ten using point notation
- **4.** Find the value of **n** if $45_n = 100001_{two}$
- 5. Find the value of **n** if 103 $_n + 26 _n = 131 _n$
- 6. Convert 102 to binary base
- 7. Workout the following leaving your answer in the base indicated
 - (i) 152 $_{eight}$ imes 43 $_{eight}$
 - (ii) et5 $_{twelve}$ \times 8t $_{twelve}$
- 8. Arrange the following numbers 36 eight , 302 and 202 three in ascending order